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We consider the unsteady motion of a viscous incompressible fluid inside a cylindrical
tube whose radius is changing in a prescribed manner. We construct a class of exact
solutions of the Navier–Stokes equations in the case when the vessel radius is a
function of time alone so that the cross-section is circular and uniform along the pipe
axis. The Navier–Stokes equations admit solutions which are governed by nonlinear
partial differential equations depending on the radial coordinate and time alone, and
forced by the wall motion. These solutions correspond to a wide class of bounded
radial stagnation-point flows and are of practical importance. In dimensionless terms,
the flow is characterized by two parameters: ∆, the amplitude of the oscillation, and
R, the Reynolds number for the flow. We study flows driven by a time-periodic wall
motion, and find that at small R the flow is synchronous with the forcing and as
R increases a Hopf bifurcation takes place. Subsequent dynamics, as R increases,
depend on the value of ∆. For small ∆ the Hopf bifurcation leads to quasi-periodic
solutions in time, with no further bifurcations occurring – this is supported by an
asymptotic high-Reynolds-number boundary layer theory. At intermediate ∆, the
Hopf bifurcation is either quasi-periodic (for the smaller ∆) or subharmonic (for
larger ∆), and the solutions tend to a chaotic attractor at sufficiently large R; the
route to chaos is found not to follow a Feigenbaum scenario. At larger values of ∆,
we find that the solution remains time periodic as R increases, with solution branches
supporting periods of successive integer multiples of the driving period emerging. On
a given branch the flow exhibits a self-similarity in both time and space and these
features are elucidated by careful numerics and an asymptotic analysis. In contrast
to the two-dimensional case (see Hall & Papageorgiou 1999) chaos is not found at
either small or comparatively large ∆.

1. Introduction
Viscous flow in a circular tube driven by oscillatory wall motion has numerous

practical applications, including blood flow, piezo-driven drop-on-demand ink jet
printing and mixing processes. A recent physiological application is transmyocardial
laser revascularisation (TMLR), which was partly modelled and analysed by Waters
(2001). This novel medical procedure involves the laser drilling of narrow circular
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tunnels through the heart muscle as a way of feeding oxygenated blood to regions that
are not sufficiently supplied by the coronary circulation (see Waters 2001 for details as
well as the medical article by Horvath et al. 1995 and references therein). The tunnels
are filled with oxygenated blood and the heart beating causes a complicated oscillatory
flow. The success of the medical procedure hinges on the efficacy of oxygen transport
by the flow. Thus, it would be important to understand the underlying flow field.

The present study parallels that of Hall & Papageorgiou (1999) (referred to as HP in
what follows) who investigated the incompressible two-dimensional flow in a pulsating
channel. Solutions can be constructed which are of stagnation-point form, leading to
a class of exact Navier–Stokes solutions involving time and the vertical coordinate
alone. (This type of flow is used in the study of Waters 2001.) We briefly describe
the results of HP in order to emphasize the differences between that and the present
study. The relevant bifurcation parameters for these problems are the wall oscillation
amplitude ∆ and the Reynolds number R based on the frequency of oscillation.
Using numerical experiments, HP find that the flow loses vertical symmetry through
a symmetry-breaking bifurcation at some R and for all values of ∆. Eventually the
flow becomes chaotic as R increases, the route to chaos depending on the value of
∆. At small ∆, a Hopf bifurcation takes place making the flow quasi-periodic in
time with a relatively small second frequency (the driving frequency in HP is 2). As
R is increased further, a period doubling on the second frequency takes place and
the quasi-periodic flow tends to a chaotic attractor at a finite value of R. This route
was also analysed using a multiple-scales boundary layer theory that predicts the
period doubling on the second frequency and verifies the numerical observations. At
relatively large values of ∆ the flow becomes chaotic after a period-doubling cascade
based on the primary driving frequency – the route to chaos was shown to follow
the Feigenbaum scenario and the first universal Feigenbaum constant was calculated
numerically with excellent agreement (see Feigenbaum 1979, 1980). At intermediate
values of ∆, the solution retains features from both the smaller- and larger-∆ results
discussed above. Eventually, however, sufficiently large Reynolds numbers lead to
chaotic flow from a Feigenbaum cascade or a quasi-periodic flow.

Pulsating axisymmetric flow is here examined in an infinitely long cylindrical pipe
whose wall moves periodically in time. Some aspects of this problem were studied
by Secomb (1978) who considered the limits of high- or low-frequency oscillations of
small amplitude – there is therefore little overlap between his paper and the present
study. The main objective of this work is to compute solutions over a wide range
of parameter values where asymptotic theories are not applicable. We achieve this
by implementing numerical techniques which are highly accurate and suitable for
computing evolving high-Reynolds-number flows. This is managed by use of the
streamfunction–vorticity formulation of the Navier–Stokes equations in axisymmetric
geometries, second-order finite differences in space, and a fourth-order Runge–Kutta
integration in time (for implementations of this method to the two-dimensional
Navier–Stokes equations see E & Liu 1996).

The results fall into the three categories of small, intermediate and relatively large
∆ (note that in our formulation ∆ < 1). With the exception of intermediate values of
∆, the results differ significantly from the two-dimensional case of HP. (In passing, it
is worth highlighting that the axisymmetric problem cannot undergo the symmetry-
breaking bifurcations that are ubiquitous in the pulsating channel problem.) For small
values of ∆, the flow is synchronous with the forcing up to a critical value of R, where
a Hopf bifurcation leading to quasi-periodic behaviour occurs. Unlike the channel
problem (see HP), this solution is found not to bifurcate again and quasi-periodic
behaviour with two frequencies persists (at least for all values of R computed – as high
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1.5 × 104). Even though this conclusion is quite difficult to establish fully numerically
due to the large values of R that are required, we provide very strong corroborating
evidence for the absence of chaos at small ∆ by carrying out a boundary layer
analysis valid at large R and small ∆ with ∆ ∼ R−1/2 (this scaling is guided by the
full calculations and denotes a curve in the (∆, R)-plane where the Hopf bifurcation
enters). The result of the boundary layer analysis is a steady-streaming problem
which evolves on timescales dictated by the second frequency which decreases as 1/R

with increasing R (this observation again comes from the simulations). Numerical
solutions of the steady-streaming problem yield-time-periodic flows at streaming
Reynolds numbers as high as 5 × 103. This axisymmetric steady-streaming problem is
the same as the accelerating wall exact Navier–Stokes problem of Brady & Acrivos
(1981), when the walls move inwards towards the origin.

When ∆ is relatively large (� 0.45), the flow is found to be time periodic. In
§ 4.2 we consider in detail the typical case ∆ = 0.6. The behaviour as R increases
is as follows: At values of R up to about 590 the flow is synchronous with the
forcing, which has period π in our case. This branch of solutions loses stability at
approximately this value and a disjoint branch of 2π-periodic solutions becomes
more attracting. As R is increased further, the 2π-branch loses stability to a disjoint
3π-branch. This pattern appears to continue indefinitely, with a nπ-branch being
replaced with a (n + 1)π-branch at a critical value of R. The solutions on a given
branch have multiple timescales which essentially are nπ, π and a shorter adjustment
timescale that takes the flow from one period to the next. The solutions in each
branch, and in particular those supported at high Reynolds numbers, exhibit some
intricate self-similar structures both in time and space.

The layout of the paper is as follows. In §3 we formulate the problem and give the
governing equations in vorticity–streamfunction form. In §4 we describe in detail our
numerical methods and diagnostic data processing techniques. In §5 we present our
results. Section 6 is devoted to the small-∆ large-R steady streaming problem and §7
contains our conclusions.

2. Statement of the problem
We consider the flow of an incompressible fluid in an infinitely long straight

circular pipe with a rigid wall, whose radius is allowed to vary in time in a prescribed
periodic manner. We adopt cylindrical polar coordinates (r, θ, z) and assume the flow
to be axisymmetric. In this case, we may introduce a time-dependent streamfunction
ψ(r, z, t), defined by

u = −1

r

∂ψ

∂z
, w =

1

r

∂ψ

∂r
. (2.1)

We also define the vorticity ω = ∇×u = Ω(r, z, t)eθ , where u = u(r, z, t)er +ω(r, z, t)ez.
If the fluid in question has kinematic viscosity ν, and is to undergo a squeezing motion
of typical frequency n with mean radius a, we non-dimensionalize by writing t∗ = nt ,
(r, z) = (ar∗, az∗), and ψ = na3ψ∗, Ω = nΩ∗. The pipe radius a(t) = aH ∗(t).
Asterisks denote dimensionless variables. These will be dropped forthwith for
convenience. The Navier–Stokes equations may then be written in streamfunction–
vorticity form as

Ωt − ψz

(
Ω

r

)
r

+
1

r
ψrΩz =

1

R

[
Ωrr +

(
Ω

r

)
r

+ Ωzz

]
, (2.2a)

ψrr − 1

r
ψr + ψzz = −rΩ, (2.2b)
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where R = na2/ν is the Reynolds number of the flow. The boundary conditions are
those of no-slip at the wall and regularity at the origin. These will be given explicitly
below.

Solutions of stagnation-point form exist for this flow, and these can be written as

ψ = zrF (r, t), Ω = zG(r, t). (2.3)

These provide exact solutions of the Navier–Stokes equations in the sense that a
system of PDEs, depending on one space coordinate and time, follows from the full
equations without approximation.

Using the forms (2.3) and fixing the flow domain by the transformation η = r/H (t),
the Navier–Stokes equations (2.2) become

Gt − Ḣ

H
ηGη − 1

H
FGη +

1

H
FηG +

2FG

ηH
=

1

H 2R

[
Gηη +

1

η
Gη − G

η2

]
, (2.4a)

Fηη +
1

η
Fη − 1

η2
F = −H 2G, (2.4b)

with boundary conditions

F (0, t) = 0, G(0, t) = 0, (2.5a)

F (1, t) = −Ḣ , Fη(1, t) = Ḣ . (2.5b)

The axisymmetry of the flow means that u and wη are zero at the origin, implying
F (0, t) = 0 and G(0, t) = 0, respectively. As mentioned above, the wall motion is
prescribed in advance, and in particular we take

H (t) = 1 + ∆ cos(2t), 0 < ∆ < 1. (2.6)

The parameter ∆ represents the oscillation amplitude. Note that without loss of
generality we choose the frequency of the wall forcing to be 2. Different frequencies
may be accounted for by varying the size of the Reynolds number. This is evident
through the non-dimensionalization above.

The system (2.4), together with (2.5), defines the problem to be studied throughout
the rest of this paper for different values of R, ∆. In the limit of zero Reynolds
number the viscous terms dominate and a unique, stable quasi-static Poiseuille flow
is found which is synchronous with the wall motion. Denoting this periodic solution
with the subscript B , we find for R � 1,

FB = Ḣη(η2 − 2) + O(R), (2.7a)

GB = −8ηḢ/H 2 + O(R). (2.7b)

Similar small-Reynolds-number results are found in the channel problem (see HP
and Stuart et al. 1990); a central difference between the channel and pipe geometries
is that the former can undergo symmetry-breaking bifurcations about the centre,
something that is not possible in axisymmetric geometries. As shown in HP, the flows
which are initially symmetric at small Reynolds numbers undergo symmetry-breaking
bifurcations which then lead to temporal Hopf bifurcations at lower Reynolds
numbers than those found if symmetry is forced. The Hopf bifurcations lead to
chaotic behaviour as discussed in HP. In the axisymmetric problem, temporal chaotic
or quasi-periodic structures are found to emerge at larger Reynolds numbers, as
would be expected.

In general, then, for higher Reynolds numbers numerical techniques must be
employed in order to construct quantitative features of the solutions and to build
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a bifurcation picture of the most attracting dynamics. This is pursued in the next
section.

3. Numerical methods
In this section we describe the numerical method used to solve (2.4), (2.5), and the

diagnostic tools used to interpret the dynamics. The numerical procedure is based on
a fourth-order Runge–Kutta integration in time with second-order central differences
in space. It is a modified version of a method developed for the Navier–Stokes
equations by E & Liu (1996), which is suitable for high Reynolds numbers. We first
rewrite equations (2.4) as

LF = −H 2G

(
L ≡ ∂2

∂η2
+

1

η

∂

∂η
− 1

η2

)
, (3.1)

Gt = M(t, F, G; R), (3.2)

with M containing all linear and nonlinear terms of (2.4a). The method is a four-stage
one and is given below. We use the notation F n(η) = F (η, tn) etc., to obtain

G1 − Gn

(	t/2)
= M(tn, F

n, Gn) F1 = L−1
(
−H 2

(
tn + 1

2
	t

)
G1

)
, (3.3)
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(	t/2)
= M

(
tn + 1

2
	t, F1, G1

)
F2 = L−1

(
−H 2

(
tn + 1

2
	t

)
G2

)
, (3.4)

G3 − Gn

	t
= M

(
tn + 1

2
	t, F2, G2

)
F3 = L−1

(
−H 2(tn + 	t)G3

)
, (3.5)

k4 = 	tM(tn + 	t, F3, G3), (3.6)

and the solution at level tn+1 is given by

Gn+1 = 1
3
(−Gn + G1 + 2G2 + G3) + 1

6
k4, (3.7)

F n+1 = L−1(−H 2(tn + 	t)Gn+1). (3.8)

In the expressions above, the inverse operator L−1 is performed numerically and
typically involves a single tridiagonal solve. Each timestep involves four tridiagonal
solvers and the method is very efficient as well as accurate. We note that for the
Navier–Stokes problem, the operator L is the Laplace operator and the cost increases
accordingly.

The discretization in η is performed on a regularly spaced grid ηi = (i − 1)	η for
i = 1, . . . , N , with the points η1 = 0 and ηN = 1 corresponding to the pipe axis and
wall respectively. The discrete values of the functions G1, G2 and G3 are obtained
in a straightforward way at the interior points η2, . . . , ηN−1 from the first of each
of equations (3.3)–(3.5). Their values at η1 and ηN are not required to obtain the
discrete values of F1, F2, F3 from the tridiagonal inversion since boundary conditions
for F are known at η1 and ηN (see (2.5)). The same is true for equation (3.8) at
level tn+1. There are two boundary conditions for F available at η = 1 as seen from
(2.5b). In solving the tridiagonal systems in (3.3)–(3.8), we use the Dirichlet condition
F (1, t) = −Ḣ . The other condition is used at the end of the step, that is after (3.7)
is solved at η2, . . . , ηN−1 and (3.8) is solved at η1, . . . , ηN , in order to obtain the
boundary values of Gn+1. The condition at η1 follows from (2.5a) as Gn+1

1 = 0. At ηN

we use the definition of vorticity (3.1). If we introduce a fictitious point outside the
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domain at ηN+1, then we can apply central differences to the condition Fη = Ḣ at ηN

(see (2.5a)) to obtain

F k
N+1 = F k

N−1 + 2	ηḢ (tk).

A central difference of (3.1), then, and elimination of the fictitious point values gives
the following boundary conditions for G to be applied at the end of the kth timestep:

Gk
1 = 0, Gk

N = − 2

H 2(tk)

[
F k

N−1 − F k
N + hḢ (tk)

h2
+ Ḣ (tk)

]
. (3.9)

This completes the numerical method. Stability is discussed in E & Liu (1996) and
we note that the method has good stability properties at high R.

3.1. Diagnostics

Detailed numerical results have been computed for various values of the Reynolds
number, R, and the wall oscillation amplitude, ∆. The diagnostic tools employed to
interpret the results are discussed below. Further details can be found in HP (see also
Bergé, Pomeau & Vidal 1984 and Eckmann & Ruelle 1985).

We use various means to describe the flow dynamics. A time series is set up by
tracking the value of the vorticity at the pipe wall, that is we define α(t) = G(η = 1, t).
A second diagnostic is constructed by defining a trajectory in three-dimensional space
by x(t) = (x1(t), x2(t), x3(t)) = (G(1/4, t), G(1/2, t), G(3/4, t)). This trajectory is then
used to construct a Poincaré section whenever x3(t) becomes zero (such points are
found by interpolation).

From these definitions the following conclusions are possible. If the flow is
synchronous with the forcing, then α(t) is periodic of period π, while period–doublings
give periods 2π, 4π and so on. One way to visualize and distinguish between different
period flows (or indeed non-periodic and chaotic ones) is to consider the two sets of
points (ti , mi), (tj , Mj ) for i, j = 1, 2, . . ., where mi and Mj are the successive minima
and maxima of the time series α(t). For example, if the flow is periodic of period π
then all mi = mi+1, Mj = Mj+1 for all sufficiently large i, j (after transients die out),
while ti+1 − ti = π. Visually, all the minima and maxima lie on exactly one straight line
respectively in the min/max-t plane. If a period doubling takes place, then the minima
and maxima will lie on two distinct straight lines respectively with ti+2 − ti = 2π and
the picture generalizes to many period doublings. Chaotic or irregular behaviour is
manifested by a seemingly unstructured set of minima and maxima. Return maps
are constructed by plotting, for example, (mi, mi+1), i = 1, 2, . . .. These are useful in
deciding whether or not the flow is chaotic and exhibits foldings and self-similarity.
To complete the picture, we note that periodic flows produce return maps (as defined
above) which consist of k points for kπ-periodic flows for integer k. Quasiperiodic
solutions emerge as filled lines or sets of such lines when the return map is considered.
Similar conclusions can be drawn from the Poincaré sections also.

Lyapunov exponents may be calculated as a further diagnostic of chaos. These are
computed by considering the rate of separation of particle paths which are initially
very close together. For two particles with position vectors r i = (ηi, zi), i = 1, 2 with
initial separation |δr0| = |r2 − r1| at t = t0, the Lyapunov exponent is defined to be

λ = lim
t→∞

1

t − t0
ln

|δr |
|δr0|
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(e.g. Ottino 1989). For a chaotic flow, λ is expected to be positive. In this case the
particle paths rapidly diverge and in the practical computation of the exponent it
is periodically necessary to renormalize the distance between the two paths while
preserving the orientation of the separation vector δr (see, for example, Wolf et al.
1985). The exponent is calculated at each renormalization and the average of these
values should tend to a constant (the maximum Lyapunov exponent) as t increases.
The particle paths are computed using fourth-order Runge–Kutta integration.

4. Solutions as the wall oscillation amplitude increases
As has been indicated in (2.7), at small Reynolds numbers a unique, stable solution

in synchrony with the wall forcing exists. One important difference from HP’s work
which should be noted is that there is no equivalent vertical symmetry here and hence
no symmetry-breaking bifurcation is encountered as the Reynolds number is increased
from zero. Instead the flow tends to remain synchronous with the wall motion until
a Hopf bifurcation introduces a second frequency, which is incommensurate with
the forcing frequency, and quasi-periodicity ensues. Since we will solve the governing
equations numerically by marching forward in time from an arbitrary initial state
as described above, we should lock on to the most stable solution in the vicinity
of the initial state. However, as the Reynolds number increases and the dynamics
become increasingly rich, there exists the possibility of numerics hopping from one
attractor to a near neighbour during the simulation. Various methods are employed
to follow a particular attractor dynamically, and these are discussed as they arise in
the text.

4.1. Moderate and relatively small ∆

4.1.1. The case ∆ = 0.3

We begin by presenting results for the case ∆ = 0.3. The initial conditions for both
F and G are taken to be zero for all η.

At low values of R, the flow is synchronous with the forcing leading to time-periodic
solutions of period π. A Hopf bifurcation takes place at a value of R between 655.0
and 660.0 with the flow being 2π-periodic. The bifurcation diagram is shown in
figure 1, which shows the positions of the maxima of α(t) defined above (after
transients have disappeared) as the Reynolds number is increased. All the results in
figure 1 were calculated using 600 points in the η-direction and a timestep of 0.0005.

At higher Reynolds numbers still, the situation becomes increasingly complicated.
Different attractors compete and our numerical procedure computes the most highly
attracting one. For example, starting with zero initial conditions and R = 860, the
long-time behaviour locks onto a 4π-periodic solution after about 100 time units.
Clearly (see figure 1) this attractor co-exists with the 2π-periodic one followed in the
figure. We calculated the 2π attractor at R = 860 by using as initial conditions the
2π-periodic results for R = 870, for example, which was the most attracting solution
for zero initial data. Continuation methods can be used to follow different periodic
attractors both forward and backwards in R – see HP for such calculations in the
case of channel flows.

Given the complicated and mixed behaviour briefly outlined above, we provide
sample numerical solutions which bring out the richness of the dynamics involved.
We begin with the case R = 900. The solution eventually locks onto a 2π-periodic
solution after a long transient of chaotic behaviour lasting about 4000 time units. The
results are shown in figure 2 where the maxima and minima of α(t) are shown, along
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Figure 1. Behaviour at moderate values of R for ∆ = 0.3.
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Figure 2. The case R = 900, ∆ = 0.3: (a) maxima and (b) minima of α(t) and their
corresponding return maps.

with their corresponding return maps (see above for the construction); the return
maps are strong evidence that the transient flow is chaotic.

The case R = 1000 is presented next. Here we find persistence of chaotic motion for
t < 8000. Results are shown in figure 3 (for a description see figure 2). In addition, in
figure 4 we show the Poincaré section constructed as described above. Again, foldings
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Figure 5. Maximum Lyapunov exponent for ∆ = 0.3, R = 1000. The λk are the values of the
exponent calculated at each renormalization (see §3).

and self-similarity are present and the existence of a strange attractor can be inferred.
In figure 5 we plot the results of the calculation of the maximum Lyapunov exponent,
as described in §3. We took t0 = 3000, with r1 = 0.6, δr = 10−5. The λk shown in
the figure are those calculated at each renormalization. One difficulty encountered
was that particle trajectories tend to rapidly approach either the upper wall or the
pipe centreline before which only a few estimates of λ may be obtained. Nevertheless,
the fact that the exponent is positive provides further evidence that the dynamics are
chaotic.

The case of the minima is particularly interesting since they lie very close together
about two mean positions, resulting in return maps which are disjoint, as seen from
the enlargements in figure 3(c).

At larger values of R, there coexist time-periodic and chaotic attractors – as
emphasized earlier, we are mostly reporting on the large-time dynamics starting from
zero initial flow. Results at the relatively large Reynolds numbers of 1500 and 2000
are given in figures 6 and 7, which show the evolution of the maxima of the wall
vorticity as time increases. The solution for R = 1500 is time-periodic with period
13π (there are thirteen lines in figure 6 corresponding to the values of the maxima
of α(t)) and for R = 2000, after a short transient, the solution is attracted to a
19π-periodic solution (there are 19 horizontal lines in the plot). In figure 8, we include
results at the intermediate values R = 1600, 1700, 1800, 1900. The plots show the
maxima of the time signal F (1/2, t) against the corresponding minima; they provide
strong evidence that a chaotic attractor is present, which is the same one for all four
values of R. All plots have about 3800 points and are the result of calculations to
10 000 time units – the length of the computation is evidence that the attractors are
long-lived (it is impossible to preclude the possibility that they may be a transient,
however). It can be concluded, therefore, that chaotic and time-periodic attractors
coexist. Chaotic behaviour is typical of intermediate values of ∆, while time-periodic
solutions with periods which are increasing (with Reynolds number) integer multiples
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Figure 6. The case R = 1500, ∆ = 0.3. Periodic solutions of period 13π.
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Figure 7. The case R = 2000, ∆ = 0.3. Periodic solutions of period 19π.

of π, the driving period, are a feature of relatively large values of ∆ (larger than
about 0.5). The latter type of attractor is discussed fully in the following Section.

To illustrate the accuracy of our numerical solutions, we have plotted in figure 9
the maxima of F (1/2, t) for the three cases N = 601, N = 1001 and N = 1201. It
is obvious from the picture that convergence is achieved. For the case R = 1000, we
have verified that increasing the resolution still results in a chaotic solution, with the
maxima of F (1/2, t), for example, always lying within the same bounds.
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4.1.2. The case ∆ = 0.2

When ∆ = 0.2 the results are qualitatively similar to those for ∆ = 0.3 except that
the flow becomes quasi-periodic in time over a range of Reynolds numbers beyond the
initial Hopf bifurcation and before the eventual emergence of chaos as the Reynolds
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number is increased. In this case the flow remains in synchrony with the wall forcing
for Reynolds numbers approximately less than 2005. We begin by showing a set of
results at R = 2050 which is just above the Hopf bifurcation point (about 2.5% above
R = 2005). Figure 10 shows the time evolution of the scaled vorticity at η = 1/4, along
with the corresponding spectrum. Note that the spectrum is generated from a much
longer signal than that depicted, in order to sharply resolve the harmonics–typically
100 periods corresponding to the lower frequency are included. The spectrum shows
clearly the driving frequency equal to 2, with the relatively small second frequency
resulting from the first Hopf bifurcation. It appears from the time signal that the
energy of the bifurcated state is less than that of the driving frequency. The energy
spectrum confirms this, showing the ratio between the two to be about a third.
This energy partition is slightly different from the channel flow case described in
HP, where the Hopf bifurcations contain significantly less energy than the driving
frequency (see, for example, figure 7 of HP, for ∆ = 0.25, where the energy of the
Hopf-bifurcated state is about two orders of magnitude less than that of the driving
frequency). The symmetry breaking which is possible in the two-dimensional case,
but not the axisymmetric one, allows the solution to keep most of the energy in the
wall-synchronous motion. As concluded below, the ratio of the two basic frequencies
is irrational and the flow is quasi-periodic in time. Theoretically, a dense spectrum
could be seen if the signal becomes increasingly longer – the energy in the other
frequencies is very small also, leading to obvious identification difficulties. Strong
evidence of the quasi-periodicity is found in constructions of return maps from the
maxima or minima of the time signal. Such results are presented in figure 11(a,b).
The maxima are plotted in figure 11(a) over a range of 6000 time units (this scale
is responsible for the deceptive joining of points in the figure to produce continuous
looking curves). Such a pattern is typical of quasiperiodicity. The accompanying
return map in figure 11(b) is further strong evidence of a quasi-periodic flow. The
loop is dense with points, due to the dominance of two irrational frequencies.

Quasiperiodic solutions were calculated up to and including R = 2206 and
a periodic solution of period 25π was found at R = 2212. We note that the
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quasi-periodic window between R = 2005 and 2212 is not necessarily the only
possible attractor; for example, a 6π-periodic solution was found at R = 2175,
starting from zero initial conditions. Just beyond R = 2206 several periodic attractors
were found including (R, period) = (2212, 25π), (2225, 19π), (2250, 13π), (2300, 7π),
(2350, 14π) and (2400, 7π). In between these attractors, chaotic solutions were seen
at R = 2270, 2275. Beyond R = 2500, and going as high as R = 4000 in increments
of 100, all computed solutions were found to be chaotic. Our extensive calculations
have not been able to establish a period-doubling route to chaos. This is again in
contrast to the two-dimensional case studied in HP, and more discussion on this point
is included in the following subsection.

We conclude the case ∆ = 0.2 by including two representative chaotic solutions at
R = 2600 and R = 4000 in figure 12(a, b). The return maps of the maxima of G(1/4, t)
exhibit noticeable foldings which are highly suggestive of chaos. A calculation of the
Lyapunov exponent yields a value of approximately 0.2, which is a further indication
that a strange attractor is present.

4.1.3. The cases ∆ < 0.2

The numerical results for other, smaller, ∆ are similar to those described above. The
main difference is that the range of Reynolds numbers for which the flow remains
quasi-periodic (after the first Hopf bifurcation) increases with decreasing ∆. For
example, for ∆ = 0.15 the first Hopf bifurcation leading to a two-frequency quasi-
periodic solution takes place at approximately R = 3700, while the corresponding
value for ∆ = 0.075 is approximately R = 15 700. Thus the computations require
very large values of the Reynolds number, and this leads to difficulties due to the
large number of grid points required in order to properly resolve the time-dependent
boundary layer at the wall. The dual limit of small wall amplitude and large Reynolds
number is crucial, and in what follows we present strong numerical evidence that
the relevant scaling to consider as R → ∞ has ∆ proportional to 1/R1/2. The same
scaling was also identified as being important for the channel problem discussed in
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HP. In that paper, a steady streaming boundary layer theory was developed which
predicted a period-doubling cascade to chaos on the second, smaller, frequency. This
complemented the numerics for the full problem, which also showed such a cascade
to chaos. A similar boundary layer theory can be constructed here. We present it
later and compare its predictions with the full numerical simulations for small ∆ to
be described next.

Simulations for the small values ∆ = 0.2, 0.15, 0.1, 0.075 were performed at various
values of the Reynolds number. For each of these ∆, the critical value of R at which
the bifurcation from the base periodic state to quasi-periodic flow takes place is
indicated by a circle in figure 13(a). The same figure is regraphed in figure 13(b) as a
log-log plot. The straight line so obtained has a slope of −2, strongly suggesting that
the bifurcation occurs when ∆ ∼ R−1/2.

At the bifurcation a new frequency is introduced into the flow which is much smaller
than that due to the wall forcing. Thus two timescales are at play in the new flow: the
short timescale of order π associated with the driving mechanism, and a much longer
modulational timescale associated with the new frequency. Our numerical results
suggest that this longer timescale becomes asymptotically large as the Reynolds
number increases; in fact it appears to scale linearly with R. Equivalently, the second
frequency tends to zero as the inverse of the Reynolds number. This behaviour is
evident in figure 14(a), where a time signal is plotted for ∆ = 0.075 and R = 18 000
(within the quasi-periodic regime). Note that, as in figure 10(a), the modulation
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amplitude is greater than the amplitude of the oscillations on the driving timescale.
Calculating the frequency spectrum confirms that the second frequency does indeed
have greater energy than the underlying period. As the Reynolds number increases,
the second frequency drifts to lower values, without a new Hopf bifurcation being
apparent. This conclusion is supported by our asymptotic theory, presented in §5.
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As noted above, the modulational period increases (while the second frequency
decreases) with Reynolds number, the relationship being approximately linear. This
is shown by the data points in figure 14(b), where the long quasi-periods associated
with the second frequency are plotted against Reynolds number when ∆ = 0.075.
This result is central to the asymptotic theory.

4.2. Relatively large amplitude (∆ > 0.45)

It was found in the previous section that chaotic solutions occur at sufficiently high
Reynolds numbers for ∆ = 0.2 and ∆ = 0.3. In contrast to the channel problem,
however, we have not found chaos for values of the wall amplitude larger than 0.45
(the values ∆ = 0.45, 0.5, 0.6, 0.7 were considered, and most of the results reported
in the latter part of this section are for the typical case ∆ = 0.6).

We start with ∆ = 0.45. As with previous calculations the flow is π-periodic when
the Reynolds number is sufficiently small, and a Hopf bifurcation leading to a 2π-
periodic solution occurs at a Reynolds number less than 500. Subsequently, the flow
becomes 3π-,4π-periodic at R = 750, 900. At higher R the flow alternates between
intervals of nπ-periodic solutions (n being an increasing integer as R increases), and
what appears to be quasi-periodic behaviour. All integrations were started with zero
flow. A typical result is given in figure 15 which shows a plot of the maxima of
the wall vorticity when R = 1500. The intermittent windows of nine almost straight
lines are the result of a co-existing 9π-periodic attractor competing with the quasi-
periodic one. Indeed, the energy spectrum plotted in figure 15 shows a peak at a
frequency of 0.2205, a slight shift from the value of 2/9 required for the flow to be
9π-periodic. Other calculations exhibit similar intermittency patterns; for example at
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R = 1200, 1400, 1600, 1800 we find time intervals where the solution is 7π-, 8π-,
10π-, 12π-periodic respectively. As mentioned, no long-lived chaotic solutions have
been found at this value of ∆. Owing to the prohibitive cost of the calculations
(typically we used 1200 grid points and a timestep of size 10−4) we did not go beyond
R = 2000, but we expect the scenario presented above to persist.

For ∆ = 0.45, then, there is a competition between aperiodic attractors and time-
periodic solutions of periods which become increasingly large with Reynolds number,
but which are integer multiples of the driving period, π. A clarification of these
attractors is possible at even larger values of ∆, of which 0.6 is a representative
example. At such large amplitudes, aperiodic behaviour is not observed and the flow
remains time-periodic, at least for all the Reynolds numbers studied. We discuss this
flow in full because it is completely different from the Feigenbaum routes to chaos
discovered for the channel problem at sufficiently large ∆ – see HP.

In figure 16 we show a picture of the bifurcations for Reynolds numbers less than
1000. A norm, defined below, is plotted against Reynolds number in different solution
regions. The norm is defined by

Norm =
1

T

∫ t0+T

t0

(F (1/4, t))2 dt, (4.1)

where T is the period of the solution (an integer multiple of π) and t0 is an arbitrary
reference value where the integration begins and does not affect the final outcome.
The three distinct branches shown support π-, 2π- and 3π-periodic solutions as R

increases. The branches are disjoint in the sense that there is not a smooth supercritical
bifurcation that leads from one branch to the next. (Note that a smooth bifurcation
can lead to period doubling, quadrupling etc., but it is not possible to go smoothly
from a 2π- to a 3π-periodic solution, for example.) This picture persists at higher
Reynolds numbers and we find solutions having periods which are sequentially larger
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Window Type of attractor Scale factor λ

0 < R � 590 π-periodic –
578 � R � 869 2π-periodic –

861.5 � R � 1075 3π-periodic –
1100 � R � 1250 4π-periodic 1.51 (R = 1250)
1300 � R � 1450 5π-periodic 1.43 (R = 1425)
1453 � R � 1500 6π-periodic 1.41 (R = 1470)

R = 1700 7π-periodic 1.35
1800 � R � 1900 8π-periodic 1.30 (R = 1900)

R = 3000 16π-periodic 1.18

Table 1. Overview of numerical results for ∆ = 0.6.

integer multiples of π. In the lower part of figure 16, we show the details of the
branches 2 and 3 in the regions where they overlap with the branches 1 and 2
respectively. The stable branches computed are seen to terminate at limit points
(labelled A and B respectively); for values of R above the given limit point, a stable
and an unstable part of the same branch co-exist, with the unstable one not shown
because our numerical methods are based on solving initial value problems and can
only compute stable branches. From a practical point of view, it was found that in
order to calculate the branches in the neighbourhoods of A and B as the Reynolds
number decreases, a delicate continuation had to be used to avoid the solution
jumping onto the more strongly attracting branch below (branch 1 for the limit point
A and branch 2 for B). Briefly, this was done as follows: Given a periodic solution at
a Reynolds number R0, say, just above A or B, a solution on the same branch was
calculated by using this as initial conditions and computing with a dynamic Reynolds
number R = R0 − R tanh(αt), where α is a measure of how slowly varying the tanh
function is (typical values are in the range 0.05–0.2). For values of αt > 10, the
Reynolds number is practically equal to R0 − R and was fixed to this value for the
remainder of the calculation, which was continued to convergence. As the limit points
are approached, the values of the decrements R had to be taken smaller and smaller,
reaching values of 0.025 or less.

The different periodic attractors identified by our calculations are summarized in
table 1. We expect the pattern to continue to higher Reynolds numbers. On each
individual branch we have found that the solutions possess a self-similar structure,
which is best described by considering an individual case, which we do next.

4.3. The case ∆ = 0.6, R = 1700

In considering this particular example we aim to highlight certain spatio-temporal
self-similarity at different Reynolds numbers for ∆ = 0.6. To elucidate this, we
begin by showing in figure 17 a plot of several time traces, sampled at different
radial locations after transients have decayed, along with the wall function H (t). The
calculation was initiated with zero flow. The flow is 7π-periodic and the signal, taken
from positions sufficiently far from the wall, consists of seven individual peaks per
cycle a distance π apart. Note that the axial velocity is in phase with H (t), while
the radial velocity at η = 1/4 is out of phase. Such features are absent closer to the
wall, for example for u(3/4, t), where it is also observed that the radial velocity has
switched sign and is now in phase with the wall oscillation. Further consideration of
spatial features follows below.
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The individual pulses appear to be self-similar, and this can be confirmed by rescal-
ing and overlaying successive peaks. Defining λ to be the ratio of successive maxima
(starting from the largest one) of the signal F (1/2, t), we find that the scale factor, λ,
is the same across one period with errors of less than 1% entering for the last few
peaks. This strongly suggests that peaks decay geometrically every π time units over
the given period which is of length nπ. These results are summarized in table 1. We
remark that λ decreases slowly with Reynolds number.

Despite the relatively clear time signals seen above, we have determined numerically
that over the 7π period, unsteady, nonlinear and viscous terms compete in a compli-
cated manner. Over parts of the cycle, all three sets of terms have comparable ma-
gnitudes across the whole flow field. Thus viscous terms are active even up to the pipe
centre line during some parts of the period. However, over the peaks, where both F

and G become relatively large, the nonlinear terms alone dominate. At these times we
find that the solution for F (η, t) across the flow field resembles very closely a Bessel
function of order one half. To explain this, we observe that with both R and F large
the governing equations (2.4a, b) may be written, to a first approximation, as

−F̃ G̃η + F̃ ηG̃ +
2F̃ G̃

η
= 0, (4.2a)

F̃ ηη +
1

η
F̃ η − 1

η2
F̃ = −H 2G̃, (4.2b)

where F̃ , G̃ are rescaled variables. The boundary conditions are F̃ (0, t) = 0, G̃(0, t) =

0, and the inviscid no-penetration condition on the moving wall, F̃ (1, t) = 0. Equation

(4.2a) may be integrated exactly and using this result to eliminate G̃ from (4.2b)
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of solution (4.3), which is shown as circles.

produces the exact solution

F̃ = A(t) J1/2(kη2) =

(
2

kπ

)1/2

A(t)
sin kη2

η
, (4.3)

where J is the Bessel function of the first kind, and A(t) is an unknown function
of time. The boundary condition at the wall then requires that k = mπ, for some
integer m. We make the choice m = 2 solely to agree with our numerical calculations.
To validate this inviscid structure, we plot profiles of F across the pipe at various
times over a particular peak. Figure 18(a) shows part of the second peak occurring
in the u(1/4, t) trace seen in figure 17. Profiles of F are plotted in 18(b) at times
corresponding to the points indicated on the time signal. In 18(c) are shown the
profiles at the four sample times and the Bessel solution (4.3), all normalized so that
their maximum values are equal to one. The excellent agreement between the profiles
is good evidence of the validity of (4.3) during this part of the cycle. In particular we
note that the rescaled profile (iii), at which point F and G are nearly at their largest,
is indistinguishable from the Bessel solution. This universality after normalization is
possible due to the separable nature of the solution (4.3). It has been numerically
confirmed that this inviscid structure also holds true over the other peaks in the cycle.
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Referring to the typical situation of figure 18, as we move forwards in time from point
(iv) the unsteady and viscous terms come into play, destroying this structure. This
implies that, even though the Reynolds number is large, the full equations must be
solved in order to connect one self-similar inviscid structure to the next. We attempted
a large Reynolds number analysis that confines viscous effects to the boundary layer
for all time. This analysis has not proven successful in describing the rich dynamics
reported here.

5. The steady-streaming limit ∆ → 0, R → ∞
The numerical results of §4.1 suggest that the scaling ∆ = O(R−1/2) is important as

∆ → 0, since it marks the boundary between synchronicity with the wall forcing and
the onset of quasi-periodic flow. In this section we establish the asymptotic structure
associated with this scaling. We therefore start by assuming the large-R relationship

∆ = dR−1/2,

for some unknown constant d . This limit has also been briefly discussed by Secomb
(1978).

If we eliminate G from the governing equations (2.4), we obtain a single equation
for F . This can be simplified somewhat by making the transformation F = −Ḣη −
2H 5f (η, t)/η and introducing the new variable y = η2. In this way we derive the
single governing equation

1
4
fyyt + H 4(ffyyy − fyfyy) =

1

H 2R
(yfyyyy + 2fyyy), (5.1)

which is strikingly similar to that obtained in the two-dimensional case (see HP). The
boundary conditions are of course different. They are

f (0, t) = 0, lim
y→0

{
y1/2fyy(0, t)

}
= 0, (5.2a)

f (1, t) = 0, fy(1, t) = −Ḣ /2H 5, (5.2b)

and follow from (2.5). The proceeding asymptotic analysis runs along the same lines
as that in HP. When R is large we infer the existence of a boundary layer of thickness
O(R−1/2) at the wall, in which the dominant balance is between the unsteady and
viscous terms. We therefore introduce the wall variable ζ = R1/2(1 − y). The form of
the boundary conditions suggest that in the boundary layer the expansion

f = R−1f0(ζ, t) + R−3/2f1(ζ, t) + R−3/2fM (ζ ) + O(R−2) (5.3)

is appropriate. The solution details follow in the manner of HP; we therefore provide
only the salient points. The zeroth-order equation is easily integrated to yield f0(ζ, t).
At next order all terms are averaged over time to produce an inhomogeneous equation
for fM (ζ ) whose solution is again straightforward. Satisfying the boundary conditions,
we find that this solution has the property,

fM ∼ −6d2ζ as ζ → ∞, (5.4)

and that f0 is of order unity as we leave the layer. In the core part of the flow, where
y = O(1), we make the expansion

f = R−1fC(y, t) + R−1Rsφ(y, τ ) + O
(
R−3/2

)
, (5.5)

where, by introducing the new variable τ = (Rs/R)t , we allow for slow variation of
φ on an O(R) timescale, which is consistent with the numerical results of §4.1 (see
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particularly figure 14b). The steady-streaming Reynolds number Rs is defined below,
where its significance will become apparent.

The leading-order solution fC(y, t) is time-periodic with zero mean. Of greater
interest here, however, is the steady-streaming term φ(y). Substituting (5.5) into (5.1)
and integrating over a single time period, we obtain

1
4
φyyτ + (φφyyy − φyφyy) =

1

Rs

(yφyyyy + 2φyyy). (5.6)

Here we have introduced the steady-streaming Reynolds number Rs = 6d2 (see Stuart
1966). The boundary conditions are

φ(0) = 0, lim
y→0

y1/2φyy(0) = 0, (5.7a)

φ(1) = 0, φy(1) = 1. (5.7b)

Condition (5.7b) follows from matching with the wall layer via (5.4).
At this stage an analogy may be drawn with the flow in a pipe with an acc-

elerating wall, which is also governed by the system (5.6), (5.7). The sign on the
Neumann boundary condition at the wall determines the direction in which the
wall is accelerating. For our case it is towards the origin. Brady & Acrivos (1981)
studied both the two-dimensional and axisymmetric versions of this problem when the
wall is accelerating away from the origin (in which case φy(1) = −1). These authors
investigated the existence of steady solutions over the full range of Rs and showed that
multiple solutions exist at some parameter values. Intriguingly, for the axisymmetric
problem, they noted that no steady solutions exist in the range 10.25 < Rs < 147.
Using the numerical method described in that paper, steady solutions to our system
(5.6), (5.7) have been computed for up to Rs � 6000 and they appear to be unique.
However, to tie in with our earlier numerical results we are primarily interested in
time-dependent solutions of the equations. These may be found by adapting the code
for the full problem developed in §3, and marching forward in time at a fixed Rs until
transients have decayed. In this way the steady solutions computed using Brady &
Acrivos’s method were recovered, and the Reynolds number was increased until a
Hopf bifurcation invoked the existence of time-dependent solutions. The location of
this bifurcation was pinpointed by a linear stability analysis about the steady base
state. Thus, if at a fixed Rs the steady solution is φB(y), we write

φ = φB(y) + esτ φ̃(y),

where φ̃ is assumed small, and solve the resulting eigenvalue problem for s. This can
be done by marching a linearized form of the previous code forward in time from
any given initial conditions until s equilibrates, or by treating it as a generalized
eigenvalue problem and solving for all s. The latter calculation produces the results
shown in figure 19. The first eigenvalue to cross the real axis is complex and thus
represents a Hopf bifurcation. This occurs at Rs � 592.27. Comparison can now be
made with the numerical results for the full problem in §4.1. Taking the fitted line
of gradient −2.0 in figure 13(b) we use the intercept with the log R-axis to predict
d � 9.2. The value of Rs for the Hopf bifurcation calculated above gives d � 9.9. The
agreement is relatively good.

Beyond the Hopf bifurcation the solutions are periodic, with period an increasing
function of the Reynolds number Rs . For the channel problem, HP found that as the
steady-streaming Reynolds number was increased a period doubling on the second
frequency occurred, leading ultimately to chaos. The length ratios of the successive
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Figure 19. Real part of the calculated growth rates s versus Rs for the perturbed
steady-streaming problem. A solid line means that s is real, while a broken line indicates
a complex conjugate pair. The Hopf bifurcation occurs at Rs � 592.27.
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Figure 20. Time series G(1/2, τ ) when Rs = 5000.

periodic subwindows agreed well with Feigenbaum’s theoretical value (Feigenbaum
1979, 1980) for such a cascade in the case of discrete maps. However, for the
axisymmetric problem, in stark contrast to the two-dimensional results, we have
found no chaos at any values of Rs . As the steady-streaming Reynolds number is
increased beyond the initial Hopf bifurcation, the flow remains periodic (with period
depending on Rs) and apparently no chaotic regime is ever reached. We computed
the flow for Reynolds numbers up to about 20 000 without encountering any further
bifurcations. Figure 20, where Rs = 5000, shows how for larger Reynolds numbers
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the time signal develops a periodic sequence of spikes, representing very short bursts
of intense acceleration.

6. Concluding remarks
We have considered incompressible flow in a cylindrical pipe whose wall oscillates in

a prescribed periodic manner. This problem represents the axisymmetric counterpart
of the pulsating channel flow studied by Hall & Papageorgiou (1999). In both cases
a stagnation-point structure is assumed. This simplifies the governing system to a
partial differential equation involving time and one spatial coordinate. For the two-
dimensional case, Hall & Papageorgiou uncovered a rich set of flow dynamics,
including periodic, quasi-periodic and chaotic solutions. The same is true for the
axisymmetric case studied here, although the new geometry introduces some notable
differences. At fixed wall amplitude, as the Reynolds number is increased, the flow
remains in synchrony with the wall movement until the Reynolds number passes
through a critical value. At this point a Hopf bifurcation occurs, introducing a new
frequency and leading to quasi-periodic flow. The location of this critical point and
the dynamics occurring thereafter are dependent on the size of the wall amplitude.
In general periodic, quasi-periodic and chaotic attractors may exist. We have studied
the axisymmetric flow for small, moderate and larger values of the wall amplitude.
Since our numerical method evolves the solution from an initial state (usually that of
zero flow), it converges to the most stable solution for any fixed set of the parameter
values. Thus, while several different competing attractors may exist at any one point
in parameter space, our solution picks out only the most attracting one. However,
particularly for the larger amplitude dynamics, we have been able to follow a specific
solution branch by means of a continuation method.

For intermediate values of the wall amplitude, periodic attractors exist with periods
distinct from that of the driving motion. However, when the Reynolds number is
taken to be sufficiently large, our results suggest that the flow always descends into
chaos. The situation is quite different when the amplitude is small. In this case,
the quasiperiodic flow arising at the first bifurcation continues indefinitely, with no
further periodic attractors being encountered, and more importantly without the
appearance of chaos. For wall amplitudes as small as 0.075 we have taken the
Reynolds number to be as large as 2 × 104, where the flow is still quasiperiodic. In
the small-amplitude, large-Reynolds-number limit, an asymptotic analysis is possible.
This leads to a steady-streaming system active over the majority of the flow field,
whose own stability to time-dependent solutions may be examined. We found that
a single Hopf-bifurcation induces a stable time-dependent solution of the steady-
streaming equations, but, as the steady-streaming Reynolds number was increased,
no period-doubling cascade to chaos was ever encountered. This is consistent with
the persistence of quasi-periodic flow found in the full numerical simulations, but
is in contrast to the two-dimensional case and seems to be a direct result of the
axisymmetric geometry.

At the larger values of the wall amplitude, the situation is also noticeably different
from the channel flow. In that case a Feigenbaum period-doubling cascade to chaos
was identified, with a number of periodic attractors existing just beyond. For the
axisymmetric problem, we have found no evidence of chaos at large amplitudes.
Instead, a succession of periodic attractors were found, with periods equal to
sequentially larger integer multiples of π. On any one of these nπ-periodic branches
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the solutions possess striking self-similar inviscid structures not identified in the
two-dimensional case.

In none of the instances where it occurs have we been able to identify a period-
doubling route to chaos; rather the transition appears to be abrupt, with no preceding
cascade.

Finally, we make some comments on the physical significance of our work.
Reintroducing physical units, we see that if B represents the dimensional amplitude
of wall vibrations, then our analysis predicts the onset of quasi-periodic flow when

B = 9.9

(
ν

n

)1/2

+ · · ·

for high-frequency (large n) oscillations. Here we have used the larger of the two
figures quoted for d in §5, which comes from the asymptotic analysis. Taking water as
an example fluid (so ν = 10−6 m2 s−1), we see that for frequencies of 1000 Hz, 100 Hz
and 10 Hz, wall amplitudes of only 0.18 mm, 0.56 mm and 1.77 mm respectively are
required to produce quasi-periodic flow, although our work suggests that increasing
the frequency will never result in chaos; larger wall amplitudes may move the flow
into the chaotic regime.

Regarding the TMLR process mentioned in the introduction, the tunnels drilled
into the heart muscle are of approximate diameter 0.5 µm and the wall oscillations
are expected to be of typical frequency 1Hz (Waters 2001). Blood has a kinematic
viscosity of about 4 × 10−6 m2 s−1 at normal body temperature (37◦C) (Pedley 1980).
This flow has a Reynolds number of 1.6 which is well below the first Hopf bifurcation
for any value of the wall amplitude. Waters uses a two-dimensional model and assumes
that the blood flow remains synchronous with the wall motion. The present results
show that this assumption would also be valid for an axisymmetric model.

For drop-on-demand ink jet printing, the wall amplitude is expected to be relatively
large, the frequency very high and the pipe diameter very small. Taking a = 50 µm,
ν = 2.3 × 10−6 m2 s−1 as typical values for the mean pipe diameter and kinematic
viscosity of printer’s ink respectively, and assuming an operational frequency of
100 kHz, we find R = 343 as a characteristic Reynolds number. For sufficiently large
amplitudes, this Reynolds number may well be large enough to produce the integer
multiple of π-periodic regimes described in §4.3. While the piezo-driven pulsations in
ink jet nozzles are in reality confined to a particular portion of the pipe, our similarity
solution may still apply to some part of the flow field.

The work of D. T. P. was supported by the National Science Foundation (Grant
DMS-007228).
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